The Odd Gamma Weibull-Geometric Model: Theory and Applications
نویسندگان
چکیده
منابع مشابه
The Additive Weibull-Geometric Distribution: Theory and Applications
In this paper, we introduce a new class of lifetime distributions which is called the additive Weibull geometric (AWG) distribution. This distribution obtained by compounding the additive Weibull and geometric distributions. The new distribution has a number of well-known lifetime special sub-models such as modified Weibull geometric, Weibull geometric, exponential geometric, among several othe...
متن کاملThe Transmuted Exponentiated Weibull Geometric Distribution: Theory and Applications
A generalization of the exponentiated Weibull geometric model called the transmuted exponentiated Weibull geometric distribution is proposed and studied. It includes as special cases at least ten models. Some of its structural properties including order statistics, explicit expressions for the ordinary and incomplete moments and generating function are derived. The estimation of the model param...
متن کاملWeibull Rayleigh Distribution: Theory and Applications
For the first time, a three-parameter lifetime model, called the Weibull Rayleigh distribution, is defined and studied. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood and least squares methods is used for estimating the model parameters and the observed Fisher’s information matrix is derived. We ill...
متن کاملPower Normal-Geometric Distribution: Model, Properties and Applications
In this paper, we introduce a new skewed distribution of which normal and power normal distributions are two special cases. This distribution is obtained by taking geometric maximum of independent identically distributed power normal random variables. We call this distribution as the power normal--geometric distribution. Some mathematical properties of the new distribution are presented. Maximu...
متن کاملThe Beta-Weibull Logaritmic Distribution: Some Properties and Applications
In this paper, we introduce a new five-parameter distribution with increasing, decreasing, bathtub-shaped failure rate called the Beta-Weibull-Logarithmic (BWL) distribution. Using the Sterling Polynomials, various properties of the new distribution such as its probability density function, its reliability and failure rate functions, quantiles and moments, R$acute{e}$nyi and Shannon entropie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2019
ISSN: 2227-7390
DOI: 10.3390/math7050399